I mproving Softwar e Size Estimates by
Using Probabilistic Pairwise Comparison Matrices'

Dr. Jairus Hihn

Karen T. Lum

Jet Propulsion Laboratory, California Institute Jet Propulsion Laboratory, California Institute

of Technology
Jairus.M.Hhn@jpl.nasa.gov

Abstract

The Pairwise Comparison technique is a general
purpose estimation approach for capturing expert
judgment. This approach can be generalized to a
probabilistic version using Monte Carlo methods to
produce estimates of size distributions. The
probabilistic pairwise comparison technique enables
the estimator to systematically incorporate both
estimation uncertainty as well as any uncertainty that
arises from using multiple historical analogies as
reference modules. In addition to describing the
methodology, the results of the case study are also
included. This paper is an extension of the work
presented in [1] and will show how the original
software size estimates compared to the actual
delivery size. It will also describe the techniques
used to modify the approach based on lessons
learned. The results because they are based on only
one case do not validate the effectiveness of the
proposed approach but are suggestive that the
technique can be effective and support the conclusion
that further research isworth pursuing.

1. Introduction

Software cost estimates are typically required in
the early stages of the life-cycle when requirements
and design specifications are immature. Under these
conditions, the production of an accurate cost
estimate requires extensive use of expert judgment
and the quantification of significant estimation
uncertainty. Research has shown that under the right
conditions, expert judgment can yield relatively
“accurate” estimates [2]. Unfortunately, most expert
judgment-based estimates do not meet these
conditions and frequently degenerate into outright
guessing. At itsbest, expert judgment is a disciplined
combination of a ‘best guess and historical
analogies. Pairwise comparison matrices provides a
formal, systematic means of extracting, combining,

of Technology
Karen.T.Lum@jpl.nasa.gov

and capturing expert judgments and their relationship
to analogous reference data [3].

The use of matrices of pairwise comparisons as
an approach for deriving a cardinal ranking vector
from subjective paired comparisons was first
introduced by Saaty in 1977 as part of the Analytical
Hierarchy Process (AHP) [4]. AHP, as originaly
proposed, is a decision-making or prioritization
technique. The usefulness of this technique for
software size estimation was recognized in the mid-
eighties [5, 6]. Bozoki provided a more detailed
description of his approach in [7]. Using a pairwise
comparison matrix to estimate software size requires
an expert's judgment as to each module's relative
bigness compared to one another. The effectiveness
of this approach is supported by experiments that
indicate that the human mind is better at identifying
relative differences than at estimating absolute values
[8,9]. In this paper, for ease of exposition, pairwise
comparison matrices will be caled judgment
matrices following [10].

An opportunity to apply the pairwise comparison
technique arose when a cost estimate was required
for a mission critical ground software project. The
team wanted to estimate the effort for its next
software development task based on a recently
completed development activity. The software team
members wanted to be more rigorous in how they
approached the estimating task. They also imposed a
number of constraints. They conceptualized their
system in terms of delivered capabilities and resisted
sizing a software system by lines of code or function
points. Hence we could not ask them to directly size
their system. Since there were numerous sources of
potential risk and uncertainty associated with the next
delivery, the technical staff wanted to provide ranges
for the ratio comparisons in order to visualize the
actual probability distribution for the estimates. In
addition, they had multiple sources of historical
software size data that could be incorporated. While
more information is generally considered helpful, this
particular situation presented some complexities that

1 The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with

the National Aeronautics and Space Administration.

the standard approach did not address well when
incorporating uncertainty. Therefore, the pairwise
technique had to be adapted to address distributional
inputs in the context of multiple reference analogies.

A description of how this technique was applied
to effort estimation in combination with software cost
modelsisprovidedin[1]. This paper describesthe
approach and algorithms used to generalize the paired
ratio comparison matrix technique in order to utilize
information inherent in multiple estimates, multiple
reference projects, and estimator range information
for the purpose of generating estimated size
distributions. In addition, this paper details the
application of thistechnique in the context of an
actual software project, in order to assess its
effectiveness.

2. Pairwise Comparison Technique

Creating a judgment matrix involves creating an
n x n matrix (A™"=[ay]), where n is the number of
entities (for software, this could be modules, use
cases, requirements, etc.), being compared. Each

element, a;j, in the matrix is an estimate of the
relative size of entity i with respect to entity j, that

Sze,

is The properties of a judgment matrix
j

require that elements be;

(1) reciprocal, a;; = 1/a;;, which means that entity i
is a;j times bigger than entity j, then entity j is
1/a;j times smaller than entity i;

(2) the same size as itself, which means that all
diagonal elementsa;; = 1.

The implication of these properties is that only the
upper or lower triangle of the judgment matrix must
be filled in. For example, see Table 1, which is a
judgment matrix with estimates of the relative
software size of four modules. The valuesin Table 1
indicate that Module 1 is two times as big as Module
2, three times bigger than Module 3, and four times
bigger than Module 4, and so forth. Notethat thereis
no a priori reason that all the values in the upper
triangle are greater than 1.

Table 1. Example judgment matrix

Module 1 Module 2 Module 3 Module 4

Module 1 2.00 3.00 4.00
Module 2 1.50 2.00
Module 3 1.50
Module 4

Based on Conditions 1 and 2 above, the matrix can be

completed asfollows:

Table 2. Example completed judgment matrix
Module 1 Module 2 Module 3 Module 4

Module 1 1.00 2.00 3.00 4.00
Module 2 0.50 1.00 1.50 2.00
Module 3 0.33 0.67 1.00 1.50
Module 4 0.25 0.50 0.67 1.00

One way to interpret the judgment matrix is that
each column yields a different ranking vector for the
purpose of determining the relative size of the four
entities. Each vector is normalized such that the
module that corresponds to itsdf (the diagonal
elements) is always 1, and it is the reference module
against which al comparisons in the same column
are made. Therefore, column 1 indicates that module
2 is half as big as module 1; module 3 is 33% of the

size of module 1; and module 4 is 25% of module 4.
Each column can be interpreted in this manner. In
Table 2, there are four different rankings (an n x n
matrix yields n independent ranking vectors). In a
case where different ranking vectors have different
rank orders for each entity, there is more estimation
uncertainty around the entities being compared.

A special case exists when a judgment matrix is
perfectly consistent. This occurs when

q; ’ a; =@ forali,j, k If ajudgment matrix is

consistent, then each vector is equivalent to all the
others, or each vector can be transformed into the
other via a linear transformation. This means that
there is really one vector of unique information.

Time has been wasted in making all of these pairwise
comparisonsin the example, since only four numbers
needed to be guessed and not six. Fortunately, it
turns out that judgments are rarely consistent, unless
the estimator is cheating.

More freguently, inconsistent matrixes will result
such as that illustrated in Table 2. Note that although
column 1 and column 2 can be linearly transformed
into the other, Table 2 is an inconsistent matrix
because columns 3 and 4 are linearly independent or
not consistent with column 1 or 2. Hence Table 2
provides 3 unique vectors from which afinal estimate
can be generated.

There have been a number of mathematical
procedures proposed for deriving a single ranking
vector from an inconsistent judgment matrix. These
produce numbers that meet the conditions of a ratio
scale. This means the dope of a line has been
defined but the intercept or origin of the scale is still
unknown. Therefore, the actual sizes of the modules
are unknown, and only their relative sizes are known.
However, as long as at least one of the modules used
to derive judgment matrix is an historical analogy,
that module can be used to determine the intercept or
origin to determine the estimated sizes for each
module.

The original approach proposed by [4] was to
use the Perron-Frobenius right eigenvector. Research
has shown, however, that this is one of the worst
techniques to use [11]. There are many potential
solutions to this problem. The Geometric Mean
method, which is very easy to calculate, has been
advocated by many authors for various reasons.
[11,12]. Miranda chose to use the geometric mean
procedure because of its simplicity and the results
achieved in during experimentation with thirty
participants [13]. Therefore, the geometric mean is
the recommended approach used in this case.

The Geometric Mean is calculated as

A
v, =Q aj" , whichyields avector
=

<

<

1
2P 0
oo\ oNnoNnocy

that meets the requirements of a ratio scale. The
examplein Table 2 would yield the vector

21
u
21.110.
&.76(
D sd
27U

As an example, the 221 is derived from
(1" 2" 3" 4",

Once the ratio scale vector is calculated, the size
of each known entity can be calculated using at |east
one known historical analogy to normalize the vector,
and in essence define the origin for the ratio scale.
This alows one to convert the vector to cardinal
numbers yielding absolute values of the size
estimates. The size of at least one of the elementsin
the ratio scale is needed as a reference to derive a
multiplier m

Sze,
m=

, ref isone of the modulesi through n
Vref

which is used to calculate the size of the other
elements. Theformulais asfollows:

6Si7e, ém’ v,
gSizeZH , gm’ VZH
=t d=m" V=°¢) -
€Sze U em v u

Ve s

é a é . "u
edze,q &m’ Vi
Using the example in Table 2 and assuming the
reference module is vs at 2000 lines of code, this step
would result in the following:
m= 2000/0.76 = 2632.15
Size; = 2632.15x 2.21 = 5826
Size, =2632.15x 1.11=2913
Size;=2632.15x 0.76 = 2000
Sze,=2632.15x 0.54 = 1414
In summary an estimate of size using pairwise
comparison matrices can be generated using four
steps:
1) Estimatetherelativesize of all modules
2) Derive the judgment matrix
3) Compute the geometric mean across
each row in the matrix
4) Derive size estimate by normalizing
values to the reference module

3. Probabilistic Pairwise Comparison
Technique

Two major adaptations to the basic pairwise
comparison technique described above were made:
(1) the incorporation of distributions for pairwise
judgments and (2) the use of multiple reference
modules. There are many distributions that could be
used. A log norma distribution would make it
possible to derive a closed form solution. However,
it is difficult for engineers to estimate the mean and
variance of a log normal distribution. The use of
estimation ranges (low, mode, and high) was a found
to be a more practical approach. Since it is important
for a software manager and engineers to have a clear
understanding of their inputs and estimates, the
simplest distribution cognitively is the triangular
distribution. Thatis,

a; ~ TriPDF (mi n, mode, max)

where the element a; is a triangular distribution
TriPDF with a minimum variate (min), a peak variate
(mode), and a maximum variate (max). This requires
the use of a Monte Carlo technique to combine the
different distributions, but with modern computers
and software that is not a difficult task.

To illustrate the technique the example from the
previous section will be used. The first step is that
the subjective judgments in Table 1 can be entered as
distributions as shown in Table 3. Here are three
elements as distributions and three as point values.

Table 3. g;as distributions

Module 1 Module 2 Module 3 Module 4
Module 1 2 3 TriPDF (3, 4, 6)
Module 2 15 TriPDF (2, 2.5, 3)
Module 3 TriPDF (1, 1.5, 3)
Module 4

In Table 3, element a;4 and element az4 are entered as
disributions ~ with a,, ~TriPDF (3,4,6)
anda,, ~ TriPDF (1, 1.5, 3), respectively. The

element a,, would be interpreted as Module 1 is
most likely 4 times bigger than Module 4, but could
be as much as 6 times bigger, or at aminimum, it
could be the three times the size. The element

ag,would be interpreted as Module 3 is most likely

1.5 times bigger than Module 4, but could be as much
as 3 times bigger, or at a minimum, it could be the
same size. Random draws are made from these
distributions to determine the geometric mean vector,
which becomes:

e A 1/nl"I

Ve = &/poFi = O a;; g,where
& =0

a, ~ TriPDF (min, mode, max).

The result is that each element in the geometric
mean vector is now adistribution vPDFi.

Another major ajustment to the basic pairwise
technique is the manner in which multiple reference
software modules are incorporated. The basic

method described above works well for the case
where there is a single reference analogy. However,
having multiple reference analogies with the typical
case of an inconsistent judgment matrix creates a
dilemma. A different total size estimate is generated
depending upon which reference module is used.
The solution proposed here involves incorporating
the multiple references by capturing the different
possible reference values as a distribution. This way
the basic Monte Carlo structure that has been set up
here can be used as a general purpose approach for
any type of ranking problem.

A triangular distribution is used to capture the
differences between the multiple reference-derived

multipliers Mppe, . through Mppe

_Sze,
PDFref; —
PDF ref;
If the matrix was consistent, having multiple
references should theoretically result in the same
multiplier value

*
Mppe = Mppg; = Mpp -

A triangular distribution is merely a simple
method of capturing the multiple references.

m

Therefore, one solves for a single distribution of the
multipliers m;DF
Mepe ~ TriPDF (minMultipl ier, GMmultipli er, maxMultipl ier)

where
X
minMultiplier = mMIN Meor s
i=1 '

% 1/ x

GMmultiplier =Q (mPDF el)

i=1

maxMultiplier = max Mepr «
i=1 '

for i through x number of references.

For example, the first four columns in Table 4
are the completed judgment matrix shown in Table 3
based on

a, ~ TriPDF (min,mode, max). The gray

shaded cells of the matrix are completed using the
properties of ajudgment matrix. Therefore, elements
a1 and ap, are the same size as itself, 1. Element as
isthe reciprocal of elementay,, whichis

1
TriPDF (2,2.5,3)

The remainder of the judgment matrix was
completed in a similar manner.

Table 4. Completed matrix and multipliers based on distributional inputs2

Modulel | Module2 | Module3 | Module4 | Geometric | References | Multiplier PDF | Size Estimate
Mean PDF [(Szewei) | (Szerei/VeFren) PDF
(VeDFi) Size x (M ppr)
Module 1 1.00 2.00 3.00 4.33 2.26 6000 2657.1
Module 2 0.50 1.00 1.50 2.50 1.17 3000 2563.72
Module 3 0.33 0.67 1.00 1.83 0.80 2000 2503.36
Module 4 0.23 0.40 0.545 1.00 0.47 To be solved for

Using the algorithm described above yields the
geometric mean distribution function, whose mean
values are shown in the Geometric Mean PDF
column of Table 4,

€2.260

21.178
€.800°

.47}

Having multiple references and an inconsistent
judgment matrix results in many multipliers of
different values. For example, given that the actual
sizes of Modules 1, 2, and 3 are 6000, 3000, and
2000 lines of code respectively, and using the
average values shown in Table 4, the expected
multiplierswould be
Bxpected (Mpe g) = SiZ8,q , Ve o = 6000, 2.26 = 2657.1°
EXpecteTy; o) = 526, , Vior o, =3000 1.17= 25637+ ad

Expected (Mypy) = 78, Voo 1o, = 2000, 0.80 = 2503.4"

*The means of the distributions are shown in the cells.

If the multiplier derived from Module 1 is
sel ected, the expected size of Module 4 would be

Expected(Sze,) = 2657.1" 0.47 =1259,

whileif the multiplier derived from Module 3 is used,
the expected size of Module 4 would be

Expected(Sze,) = 2503.4° 0.47 =1177.

In this example, having multiple references
results in three different size estimates. A problem
arises in deciding which multiplier should be used to
estimate the remaining unknown modules.

To derive the size estimate of Module 4, the
triangular distribution of the minimum multiplier,
geometric mean of the multipliers as a mode, and
maximum multiplier is used. This produces a

distribution for m;DF asshownin Figure 1.
Therefore, the size of Module 4 is

s

SZ€ppr 4 = Mppr ~ Vepr 4

which is a distribution that can be shown as a
cumulative probability curve (Figure 2).

m* 4 Cumulative Distribution Function

100%

90% Wt
80% /
70% /
60% ‘/
50% f
40% ‘/
30% /
20% /
10% //
0% t } } }

2300 2400 2500 2600 2700 2800
Multiplier Value

Probability

Figure 1. Cumulative distribution function of
Mepe

Module 4 Size
Cumulative Distribution Function

100%
90%
80%

PWad
7
70% /
60% 4
4
)4
/
J

50%
40%
30%

Probability

20%
10% /
0% t } } t
600 800 1000 1200 1400 1600
Size (SLOC)

Figure 2. Module 4 size cumulative
distribution function based on Table 3 inputs

4. Application

The techniques described above were applied to
the estimation of a mission critical ground software
delivery at JPL. The project wished to estimate the
size and cost of its next delivery (Delivery 2) based
on analogy to its current delivery (Delivery 1).

However, many actuals were not recorded during the
current delivery and therefore needed to be
reconstructed. As it was easier to reconstruct effort
data, the software team first estimated the direct cost
of Delivery 2 through pairwise comparison to
delivery 1 using effort as the size factor. The direct
effort estimate resulted in an estimate much lower
than the project team had expected [1]. The project
team was then convinced to attempt an estimate using
a cost model. Since cost models require size as an
input, the Probabilistic Pairwise Comparison
technique was used to estimate the size of Delivery 2.
The Delivery 1 source code was run through a code
counter, and the pairwise techniqgue was then
repeated for estimating the size of Delivery 2 using
the modules of Delivery 1 as reference points.

A major step in obtaining acceptance from the
team was alowing them to think of the software in
terms of capabilities. This was very important since
their cognitive model was based on the concept of
capabilities and the team had no experience in
estimating software size by lines of code or function
points. Since the pairwise comparison technique is
based on estimating the relative size differences
between modules, it was assumed that the relative
difference or ratios when comparing functions by
capability would be the same as comparing a function
by the number of lines of code- subject to a linear
transformation. This is a critical assumption, which
will be discussed in more detail at the end of the
paper.

The first delivery consisted of one major
software function (Function A) that could be further
subdivided into five modules. The second delivery
consisted of two major software functions (Functions
B and C) that each had five modules. Code counts
for the user interface modules of each Function were
not available, as they were in a language for which a
code counter was not available®. Therefore only four
modules of each function were compared with each
other. The four modules for each second delivery
software function were compared with the four
modules of the first delivery software function based
on their relative size. Function B and Function C
were not compared with each other, because the two
software functions would be developed by different
people who found it difficult to compare functions
that had not been developed yet. Therefore the
pairwise judgment matrix of this exercise produced

! T he cost of the user interfaces for Function B and Function C
were estimated in a different manner, using direct effort
comparisons, since size references were not available for the user
interface module of Function A.

two 8 x 8 matrices with 64 possible comparisons per 9ze

matrix. (Figure 3 and Figure 4). a; = , Where
A significant adaptation to the paired Sze,
comparisons method described by others is that the i ;
P y a; ~ TriPDF (mln, mode, max)

estimators were allowed to give ranges for .
These ranges were easily captured and a Monte Carlo

distribution of the ratio scales was easily
implemented in Microsoft Excel°.

Funaction B [Daliverg 2 Funciion & {Deliveny 1)

Cora happing Stochastics ‘Smoathar Fii EBI FD <l
2 (o 1 ! TiPDE(S 7513 | TaPDECS, 7500 03 2 1 15
g rdapping 1 TriPDF[.25,.275,.5) | TaPDFE(S 75 1) 02 1 1 075
E Slochaslics 1 TiPDF 15208 TaPOF(25, 636.1] | ToPDF.23] | TiPOF(51.25.2 | TaFDFRZ 34
L [Emocthar 1 TiPDF(25, 375 5)| TiPDFY 1.5 2| TaPDFL 25 575, 5] TaPDF(E, 75 1)
< |Forea Modals 1
E Ewant Based Imagraiion 1
E Partil Denvalwes 1
w [Core kagration 1

Figure 3. Original comparison inputs for Function B vs. Function A modules

i = FII;IFIIIMC elvery 7) T IFM & Function A F;ﬁ!ﬂ' /] =
o [Mecrureman Wodels 1 TAPDFZ2.531 s TFOFE253) TWPOFOSOT 11 | TIPOFZ 2252 5| TAPFDFR.2252.5]| TIPDF.5.1.75.3
i Oielay Madels 1 TP OF .50 625 0 75) 0s ToPOFD2 025 0.5 | TaPOF 1251 6] TnPOFM.F 076 17 TlPOFQ 25 0 BTS 1)
E Fils Farmais 1 TAFDF.25,1. 305 1. S TiFOF{.4,0 45,05 | THFOFH 1251 91| TAFOFY 125 1.5 | TRFOFQ. "5 DATS 1)
= [Sins 1 TiFOFM.A.045,0.5) | TFOF@.5.0 75 11| TiPOFH 1.251.51) TiFOFD.75.1.1.25
& |Fante Models |
i Evani Bazad Infegralion 1
i Parial Darreditaig 1
L |Crre Ineyraion 1
Figure 4. Original comparison inputs for Function C vs. Function A modules
Quadrants Il and Ill (Figure 5) of the matrices the property a; X ax = &k Since the other three
were easily completed utilizing the judgment matrix quadrants are based upon subjective judgments, they
properties: a;; =1/a; and a; = 1. Since Delivery 1 was are unlikely to be consistent.
completed and all the actuals were known (Table 5), The matrix was completed such that a triangular
Quadrant 1V was derived with the actuals as random variable draw formula was entered in the
reference points. For example, it is known from cells for which ranges were given (Figure 5).
actuals that the development size of Force Models The geometric mean of the rows for the matrix
was approximately 1.45 times more than Event Based was then computed to arrive at the ratio scale vector
Integration effort and 1.48 times more than the Partial (Iabeled Geometric Mean PDF in Figure 6).

Derivatives effort, etc. As quadrant 1V is based on
actuals, it is the only consistent quadrant, satisfying

:I_l - O e LA m g Y AT BB IWF " - 2 e | o - -_ = = _-' - e L -
= i Sl . I i s . 2
[z F G H 1 J [K

1 Funclion B [Delvery Function & {Delivery 1)

& Cora apping Siochastics Rmmﬂh?\ﬁ‘ EBl] PD]

3 [[co | 1o Icll'.-:- ors M‘\w-l\ 100 150

4 | & |Mapping | 100 of= 0.75 0.2 1.00 T~ 0.75
ﬂ E |saochasties 1.33 1.00 150 0Es j|:||.| 125 | ;

B | L |Smocther 1.33 0 EF 100 038 038 075

7|« [Force Mot 500 |HE] 267 1.0 IIL:.\ / 1.48 0Es

8 | E |Event Based Integration | 0150 1 057 0Es iln V 12 0.45

8 | £ |Pars! Dervates 1|.u 0 B0 257 UE-' 'J '_iu 1.00 0.44

100 & [Some bieamston k=] 1.33 238 1.0

Figure 5. Random varlable formulas are entered in cells for elements Wlth arange of comparisons

Table 5. Actual size of reference modules®

Actual Size (SLOC)

Force Models 6,500
Event Based I ntegration 4,500
Partial Derivatives 4,400
Core Integration 10,000

User Interface

Code count not available

At N L3 W e omg

-

Lokl

1

—_ = m m ww wm oI T A s T

GO _'_j =| = GMCom™r_mslar
| A B C e} E F [=] H i J [L 1 H
. . " tastipber | Esbrabe
1 Funetion B 1 W Faimctinn A [Dalivaiy 1) fsarvaie] Hiwensen | peents |- BoE
Fi Cive Mapprg | Stochashcs | Smaalher Fr =] FD cl Mgan POF| (S1OCY et (ELOCE
"l_l n: ir.-!rg _ 1,00 paLY] 0rs 075 200 100 150 am L5152 1]
4 | 2 |Mapping 1 [I L] 0.rh 141 I o0 100 0.5 LRy =i E
5 E |Stochaglics 1.33 2E7 100 1.50 0.63 20 125 300 .15 324 T
B | [Smaathar 1.1 1A | 0e7 100 0.3 1.50 [iE"] 0.75 il ATET 212
7 |« [Forre Models 5.00 00 | 160 267 1.00 145 148 068 0.20 A TTEG 4
2] E Il:n'cnl Easad Inlagraton 0.50 .00 0E0 Q&7 0.5 i.00 1.02 10.45 .07 o n| =y T iy
-] E EI-'arl.aI Dramsal s | [100 0 el 267 a.67 (o] 100 [44 110 AR ARG T
10 | & |Core Integrabon 0.7 133 033 1.13 1 .52 220 226 1.00 .13 Q05| A1450.2
11 G bdubipher | 51734 FFIETY
2 = Toial
12 Min btiigher | ZoTeBal o 0
A Max Mltipher | B14502] B Size
14 m” per 553243
15

Figure 6. A single multiplier PDF m;DF is derived from the multiple reference multipliers and

. . *
estimates are a function of My

As there were multiple references (four modules
from Delivery 1), computing the reference multiplier
required extra steps. Since the subjective pairwise
judgments were inconsistent in this application, four

reference modules produced

four

different

multipliers, each producing significantly different
estimates. A Monte Carlo run on the triangular
random draw of the four multipliers using the lowest
value multiplier as a minimum, the geometric mean
of the four multipliers as the mode, and the highest
value multiplier as a maximum was performed:

*
MppE ~ TriPDF(minMuItipIer, GMmultipler, maxMuItip'Ier)

An estimate of each Delivery 2 module was then

calculated randomly drawn

multipli

using
erMype.

the

new

Allowing ranges in the pairwise udgments and

drawing from the four possible multipliers capture

the uncertainty in the estimate and serve to average

out estimation errors.

Utilizing a Monte Carlo
technique produces size cumulative distribution
functions for each module of the Delivery 2

functions, each Delivery 2 function, and the total

Delivery 2 size. Table 6 and Table 7 show the
resulting distributions of each element in Function B
and Function C respectively, as well as the total size

of each functionin delivery 2.

Table 6. Function B size estimates

Function B
Core Mapping |Smoother |Stochastics |Total SLOC
5th Percentile 3621 2800 3316 5880 15898
Mode 5740 3831 4985 10374 22211
95th percentile 6796 5230 6444 11878 29950

3Code Counts derived using Galorath’s Count95 toal.

Table 7. Function C size estimates

Measurement| Delay File Function C

Models Models | Formats | Stations |[Total SLOC

5th Percentile 8209 3100 4525 3976 19866
Mode 10737 3789 5971 4833 24356
95th percentile 12837 4897 7053 6241 30899

5. Reaults

Delivery 2 was completed in nine months and within
10% of the budget with 24,506 lines of code. Not all
of the original capabilities were included in the
release. The task leads subjectively estimated the
differences between the planned module capabilities
and the capabilities actually delivered, which varied
from O to 100%, with most modules at 90% of the
plan. While Function B delivered 90% of its
capabilities, Function C delivered significantly
reduced capability than planned. Almost none of the
Delay Models functionality was delivered. Only
50% of Measurement Models and 90% of File
Format capabilities delivered. The size estimates
were adjusted for the differences in planned

functionality and are compared with the actual sizes
in Table 8 and Table 9.

Functions B and C were collectively
overestimated by 44%. The team’'s estimate also
produced a very wide range across the modules. On
the surface, this appears to be a mediocre
performance, but compared to an average size
underestimate of 70% on JPL Deep Space Network
subsystems upgrades (from 1989 to 1997) and
underestimates in excess of several hundred percent
on recent JPL flight software systems, it is a marked
improvement, especially considering that the team
had virtually no experience in estimating size by lines
of code. Also note that the actuals on most of the
functions fall outside of what was estimated as the 5"
to 95" percentile which indicates the estimate range
is to narrow. This type of problem is well
documented in the literature and can be adjusted for.

Table 8. Function B delivered software size vs. adjusted size estimates

FUNCTION B
Core Mapping Smoother | Stochastics | Total SLOC
Actual Sizes 5035 6115 244 748 12142
- % 5th Percentile 3259 2520 2984 5292 14308
% _g Mode 5166 3448 4487 9337 19990
< (1) 95th Percentile 6116 4707 5800 10690 26955
% Deviation from Mode 3% -44% 1739% 1148% 65%

*Qriginal estimates were adjusted to reflect the actual percentage of functionality delivered.

Table 9. Functions C delivered software size vs. adjusted size estimates

FUNCTION C
Measurement Delay
Models Models |File Formats| Stations Total SLOC
Actual Sizes 1959 689 7611 2105 12364
T & [5th Percentile 4105 0 4073 3976 12187
3 g Mode 5369 0 5374 4833 14976
2 di|95th Percentile 6419 0 6348 6241 18928
% Deviation from Mode 174% -100% -29% 130% 21%

*Qriginal estimates were adjusted to reflect the actual percentage of functionality delivered.

In interpreting the results, it is necessary to take into
consideration that the team estimated modules by
subjectively comparing relative differences in
capability - not lines of code. It was then assumed
that a pairwise comparison of capabilities was
equivalent to a pairwise comparison of software size
as measured by lines of code. This is what we earlier
refereed to as a key assumption. This assumption
was necessary. The results suggest that there are
fundamentally different types of capabilities that
need to be estimated separately that correspond to
algorithmic and procedural code. The two modules,
which are off by an order of magnitude, are Smoother
and Stochastics in Function B. These two modules

are very agorithmicaly intensive, such that six
months was spent in deriving and implementing the
algorithms for 200-800 lines of code. If these two
algorithmically intensive elements are excluded from
the analysis, the total size estimate is within 30% of
the actual (Table 10). This result strongly suggests
that pairwise comparisons between capabilities can
be used to estimate relative differences in size for
procedural code but not algorithmically intensive
code. This result is not particularly surprising, as a
number of authors have also noted problems with the
function point sizing metric when estimating
algorithmically intensive code.

Table 10. Function B actual size vs. adjusted size estimate excluding algorithmic elements

FUNCTION B
Core Mapping Total SLOC**
Actual Sizes 5035 6115 11150
- ’% 5th Percentile 3259 2520] 5791
% S|Mode 5166 3448 8200
D .=
T ® .
< W|95th Percentile 6116 4707 10810
% Deviation from Mode 3% -44% -26%

*QOriginal estimates were adjusted to reflect the actual percentage of functionality delivered.
** Excluding the algorithmically-intensive Stochastics and Smoother elements.

6. Conclusion

The pairwise comparison technique is a general
purpose estimation approach for capturing expert
judgment and can be relatively easily implemented
using Microsoft Excel° if the geometric mean method
isused to derive theratio vector V. In thisdocument,
it has been documented how this approach can be
further expanded into a probabilistic version using
Monte Carlo methods in order to produce estimates

of size distributions. The probabilistic pairwise
comparison technique enables the estimator to
systematically incorporate both estimation
uncertainty aswell as any uncertainty that arises from
using multiple historical analogies as reference
modules. Since these results are only suggestive of
the methods effectiveness, more work clearly needs
to be done to verify the effectiveness of this
approach; it does appear that it can be used to

improve software size estimates for non-
algorithmically intensive code.

Some changes in approach that could improve
the techniques performance are to formally
incorporate multiple estimators, which the technique
can easily handle. Another is to assume that the
distributions are correlated instead of independent as
was done in the current study. Both of these changes
ion approach should increase the estimated size
variances and hence ranges for the 5" and 95"
percentiles.

One natural extension of this analysis is that if
all pairwise comparisons are assumed to be log
normally distributed, a relatively simple closed form
solution exists for deriving the estimated size
distributions as a function of the means. Standard
deviations of the pairwise comparisons and the
Monte Carlo computations would not be necessary.
The disadvantage of this approach is that it has been
found in practice to be easier for engineers to
estimate low, most likely and a high than to
subjectively estimate a mean and variance of a
distribution, especialy if it is skewed, as in a log
normal distribution.

The most important result of this study may be
sociological in nature. The study proved to be a
relatively successful example of introducing
quantitative techniques into a skeptical software
development team. Working with the technical staff
in a way that they preferred and that was consistent
with their cognitive models allowed us to engage
them, eventually leading to arelatively rigorous size
estimate and use of a cost model.

7. References

[1] Lum, K., and Hihn, J., “ Estimation of Software Size and
Effort Distributions Using Paired Ratio Comparison
Matrices,” Proceedings of the 3rd Annual Joint
Conference of the International Society of Parametric
Analysts (ISPA) and Society of Cost Analysis and
Estimation (SCEA), 17-20 June, 2003, Orlando, FL.

[2] Hihn, M. and Habih-agahi, H. “ Cost Estimation of
Software Intensive Projects: A Survey of Current
Practices,” Proceedings of the Thirteenth IEEE
International Conference on Software Engineering,
May 13-16, 1991. (also SSORCE/EEA Report No. 2.
August 1990)

[3] Saaty, T. The Analytic Hierarchy Process, McGraw-
Hill, New York, NY: 1980.

[4] Saaty, T."A Scaling method for Prioritiesin a
Hierarchical Structure’. .J. Math. Psychology Vol. 15
1977, p 234-281.

[5] Bozoki, G. “ Software Size Estimator (SSE),” Centre
National d'Etudes Spatiales (CNES), Toulouse, France,
June 1986.

[6] Lambert, J. “A Software Sizing Model,” Journal of
Parametrics, Vol. Vi, 1986, pp75-87.

[7] Bozoki, G. “An Expert Judgment-Based Software
Sizing Model,” Journal of

Parametrics, Volume X111, Number 1, May 1993.

[8] Shepperd, M. and Cartwright M. “Predicting with
Sparse Data,” |EEE Transactions on Software
Engineering, Nov. 2001, Vol. 27, No. 11.

[9] Miranda, E.: “Establishing Software Size Using the
Paired Comparisons Method.” Proc. of the IWSM'99,
Lac Superieur, Quebec, Canada, September 1999, pp.
132-142

[10] Crawford, G. “The Geometric Mean Procedure for
Estimating the Scale of a Judgment Matrix,"
Mathematical Model ling, val. 9. No.3-5, pp. 327-334.
1987.

[11] Hihn, J.M. and Johnson, C. “Evaluation Techniques
for Paired Ratio Comparison Matrices in a Hierarchical
Decision Model,” Measurement in Economics,
Physical-Verlag Heidelberg, 1988.

[12] Crawford, G. and Williams, C "The Analysis of
Subjective Judgment Matrices," Rand Corporation, R-
2572-1-AF, May 1985. A Project AIR FORCE report
prepared for the USAF.

[13] Miranda, E. “Improving Subjective Estimates Using
Paired Comparisons,” |EEE Software, Jan/Feb 2001.

